Monday, 28 October 2013

Interview Series – 3-Sum Problem



Introduction & Description: Coming shorty..

Please check out the 10 video links where I go through the demo in full detail.


C# Experiments: 3-Sum Problem (Part 1)



C# Experiments: 3-Sum Problem (Part 2)



C# Experiments: 3-Sum Problem (Part 3)



C# Experiments: 3-Sum Problem (Part 4)



C# Experiments: 3-Sum Problem (Part 5)



C# Experiments: 3-Sum Problem (Part 6)



C# Experiments: 3-Sum Problem (Part 7)



C# Experiments: 3-Sum Problem (Part 8)



C# Experiments: 3-Sum Problem (Part 9)



C# Experiments: 3-Sum Problem (Part 10)



The code typed-in during the interview series is as follows for your reference:-

    private void button1_Click(object sender, EventArgs e)
    {
        //The 3-Sum Problem
        //Given N distinct integers, find all triplets that sum to exactly 0.

        var numbers = new List<int> { 5, -12, 3, -8, 10, 2, -5, 0 };
        var allTriplets = new List<Triplets>();
        var len = numbers.Count;

        //Brute-force algorithm: N^3 (N = Length of the array)

        //for (int i = 0; i < len; i++)
        //    for (int j = i + 1; j < len; j++)
        //        for (int k = j + 1; k < len; k++)
        //            if (checked(numbers[i] + numbers[j] + numbers[k]) == 0)
        //                allTriplets.Add(new Triplets(numbers[i], numbers[j], numbers[k]));

        //Step 1: Shuffle the array (For making Quick sort efficient)
        //Step 2: Sort the array using Quick Sort: N*logN
        //Step 3: Use Binary Search to find the 3rd number: -(n1 + n2) : N^2 * logN

        numbers = numbers.Distinct().ToList();
        //Shuffle(numbers);

        //len = numbers.Count;

        QuickSort(numbers);
        //int location = 0;

        //for (int i = 0; i < len; i++)
        //    for (int j = i + 1; j < len - 1; j++)
        //        if ((location = TweakedBinarySearch(numbers, -(numbers[i] + numbers[j]), j + 1)) != -1)
        //            allTriplets.Add(new Triplets(numbers[i], numbers[j], numbers[location]));

        var sb = new StringBuilder();

        //allTriplets.ForEach(triplet => sb.Append(String.Format("[{0}, {1}, {2}]\n", triplet.A, triplet.B, triplet.C)));

        int a, b, c;
        int indJ, indK;

        for (int i = 0; i < numbers.Count - 2; i++)
        {
            a = numbers[i];
            indJ = i + 1;
            indK = numbers.Count - 1;

            while (indJ < indK)
            {
                b = numbers[indJ];
                c = numbers[indK];

                if (a + b + c == 0)
                {
                    allTriplets.Add(new Triplets(a, b, c));
                    indJ++;
                    indK--;
                    //break;
                }
                else if (a + b + c > 0)
                    indK--;
                else
                    indJ++;
            }
        }

        allTriplets.ForEach(triplet => sb.Append(String.Format("[{0}, {1}, {2}]\n", triplet.A, triplet.B, triplet.C)));

        MessageBox.Show(sb.ToString());
    }

    public void QuickSort(List<int> numbers)
    {
        Shuffle(numbers);
        SortLogic(numbers, 0, numbers.Count - 1);
    }

    //Fisher-Yates Shuffle Algorithm
    public void Shuffle(List<int> values)
    {
        var random = new Random();

        for (int i = values.Count; i > 1; i--)
        {
            int j = random.Next(i);

            int temp = values[j];
            values[j] = values[i - 1];
            values[i - 1] = temp;
        }
    }

    public void SortLogic(List<int> a, int low, int high)
    {
        if (high <= low)
            return;
        //[x] => Finalized location for a number.

        //0 - 10 => [4]
        //0 - 3 => [3] & 5 - 10 => [9]
        //0 - 2 => [1] && 5 - 8 => [6]& [10]
        //[0], [2] && [5] & 7-8 => [7] & [8]

        int j = Partition(a, low, high);
        SortLogic(a, low, j - 1);
        SortLogic(a, j + 1, high);
    }

    public int Partition(List<int> numList, int low, int high)
    {
        //Example:-

        //4 2 5 9 3 6
        //l i       j

        //4 2 5 9 3 6
        //l   i   j

        //Exchange i'th & j'th value
        //4 2 3 9 5 6
        //l   i   j

        //4 2 3 9 5 6
        //l   j i

        //Exchange low'th & j'th value
        //3 2 4 9 5 6
        //l   j i

        var i = low;
        var j = high + 1;

        while (true)
        {
            while (numList[++i] < numList[low])
                if (i == high)
                    break;

            while (numList[low] < numList[--j])
                if (j == low)
                    break;

            if (i >= j)
                break;

            Exchange(numList, i, j);
        }

        //Swap with the partitioning element
        Exchange(numList, low, j);
        return j;
    }

    public void Exchange(List<int> a, int i, int j)
    {
        int temp = a[i];
        a[i] = a[j];
        a[j] = temp;
    }

    //3, 8, -4, 0, 11, 9 => -4, -4, 3, 8, 9, 11

    public int TweakedBinarySearch(List<int> a, int key, int startIndex)
    {
        int lo = startIndex;
        int hi = a.Count - 1;

        while (lo <= hi)
        {
            int mid = lo + (hi - lo) / 2;

            if (key < a[mid])
                hi = mid - 1;
            else if (key > a[mid])
                lo = mid + 1;
            else
                return mid;
        }

        return -1;
    }


Thank you for reading this post and watching the videos. Please Subscribe, Comment and Rate the Channel if you liked the videos.

Goto C# Experiments to access more of such content! Thanks again!

No comments:

Post a Comment